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Abstract—Quasi-Monte Carlo methods of numerical integration use 
low discrepancy sequence to approximate the integral and achieves 
the result faster as compared to Monte Carlo methods which uses 
pseudo random numbers. The paper describes digital nets and 
sequences, one of the major low discrepancy sequence construction 
given by Niederreiter. The Paper reviews various aspects of this 
technique and focuses randomizing the sequences produced by this 
techniques. 

1. INTRODUCTION  

The Monte Carlo method is a statistical method of evaluation 
of mathematical functions using random samples. Monte 
Carlo methods need random numbers for computation. There 
is always some error possible, but larger the number of 
random samples taken, more accurate is the result. 

In mathematical form, the Monte Carlo method is finding the 
definite integral of a function by choosing a large size of 
independent variable samples at random from a region, taking 
average of the resulting dependent-variable values, and then 
dividing by the size of the region over which the random 
samples were chosen. This is different from the traditional 
method of approximating a definite integral, in which 
independent-variable samples are selected at equally-spaced 
points within an interval or region. 

2. QUASI-MONTE CARLO METHODS 

Quasi-Monte Carlo simulation is the traditional Monte Carlo 
simulation but using quasi-random sequences instead of 
random numbers.  

The quasi-random sequences, also known as low-discrepancy 
sequences, improve the performance of Monte Carlo 
simulations, by decreasing the computational times and 
increasing the accuracy.  

Quasi-random sequences are more evenly scattered throughout 
the region over which the Monte Carlo integral is calculated, 
uniformity of quasi random sequences improves the accuracy 
of the integral evaluation. Consider the integral of some 
function f(x) being evaluated using simulation. The idea is to 
use random points for the numerical evaluation of an integral, 
using random points to determine the area under the function. 

The integral of the function f(x) is area under the curve, which 
is approximately the total area times the fraction of points that 
fall under the curve of f(x). This method for evaluation of an 
integral is useful only for the multi-dimensional case and 
complicated functions. The integral evaluation is better if the 
points are more uniformly scattered in the entire area. 

The Monte Carlo simulation can be viewed as a problem of 
integral evaluation. To calculate an expected value we have to 
evaluate an integral (or a summation for discrete probability 
density case).  

The Monte Carlo method solves multidimensional integrals, 
the expression for the Monte Carlo approximation for the 
multidimensional integral over the unit hypercube is given by: 

 
This estimate is an approximation of an integral over the n-
dimensional unit cube, obtained by averaging the values of the 
integrand at independent random points uniformly distributed 
in the cube.  

The pseudo-random sequence of numbers looks like random 
numbers. However, pseudo random numbers are generated 
with deterministic algorithm like the linear congruential 
random generator. the implementation of these pseudo random 
sequences are, in general, of volatile type such that the seed 
(initial value of a sequence) depends of an external feeder like 
the computer clock. For example, in Excel the function Rand() 
returns a different number from U[0, 1] . 

By running the simulations, it can be verified that in most 
cases the simulation error with traditional Monte Carlo 
(pseudo random numbers) is higher or much higher than the 
error with quasi-Monte Carlo simulation. 

Even pseudo-random numbers from a reliable random 
generator, which have "the same relevant statistical properties 
as a sequence of random numbers" (Ripley, 1987), in many 
situations exhibit a very slow rate of convergence which is the 
main problem of a Monte Carlo simulation. The main problem 
in finance and in many other fields is the evaluation of an 
integral of a function, e.g., the options payoff function with 
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variable(s) assuming values that obeys some probability 
density function(s). In such cases it is possible to skip some 
statistical properties (like independence), if not required in the 
practical problem. In this types of problems the idea of low 
discrepancy sequences is applicable.  

The quasi-random sequences have low discrepancy property 
that is a measure of uniformity for the distribution of the 
points. This is very useful to represent a uniform distribution 
.for the multi-dimensional case, this is a measure of no large 
gaps and no clustering of points in the d-dimensional 
hypercube. Following is the expression for discrepancy of a 
sequence, 

 
The following table illustrates the statistical properties of 
quasi-random sequence (used a van der Corput sequence in 
base 2) compared with the (theoretical) Uniform [0, 1] 
distribution, and with two typical pseudo-random sequences 
(generated with Excel).  

 
 
Hence, quasi-random sequence presents a better performance 
than typical pseudo-random sequences for all four 
probabilistic moments, indicating that quasi-random sequence 
is more representative of U[0, 1] than pseudo-random 
numbers. The quasi-random numbers were developed by 
number-theoreticians.  

Quasi-Monte Carlo simulation originates from the discipline 
of Number Theory. Concepts for the measure of dispersion 
like discrepancy replacing the concept of variance, the use of 
tools like change of number base , the use of properties of 
prime numbers , the use of the coefficients of primitive 
polynomials, and so on, comprise the tools of number theory.  

There are some problems when using Quasi Monte Carlo:  

 First, quasi-Monte Carlo methods are valid for integration 
problems, but may not be directly applicable to 
simulations. 

 Also the improved accuracy of quasi-Monte Carlo 
methods is generally lost for problems of high dimension 
or problems in which the integrand is not smooth.  

 

2.1 Quasi-random sequences (Low Discrepancy Sequences) 

Quasi-random numbers are also called low discrepancy 
sequences. The discrepancy of a sequence is a measure of its 
uniformity and is defined as follows: 

Given a set of points x1,x2,....,xN∈ I S and a subset G⊂I S , 
define the counting functionSN(G) as the number of points xi∈ 
G. For each x=(x1 , x2,........,xs) ∈ IS , let Gx be the rectangular 
s -dimensional regionGx = [0, x1 ) × [0, x2 ) × L × [ 0, x S ) 
with volume x1x2 .... xN. Then the discrepancy of the points x1, 
x2 ,........, xN is given by: 

The discrepancy is therefore computed by comparing the 
actual number of sample points in a given volume of 
multidimensional space with the number of sample points that 
should be there assuming a uniform distribution. 

It can be shown that the discrepancy of the first N terms of 
quasi-random sequence has the form: 

 
The principal aim in the construction of low-discrepancy 
sequences is thus to find sequences in which the constant CS is 
as small as possible. The concept of low-discrepancy is 
associated with the property that the successive numbers are 
added in a position as away as possible from the others 
numbers that is, avoiding clustering. The sequence is 
constructed based in the schema that each point is repelled 
from the others. So, if the idea for the points is maximally 
avoiding of each other, the job for the numbers generated 
sequentially is to fill in the larger "gaps" between the previous 
numbers of the sequence.  

Various sequences have been constructed to achieve this goal. 
Here we explain two of them, 

2.2. Vander Corput sequence 

This is the basic low discrepancy sequence 

Steps to obtain van der corput sequence 

1. The nth point of the sequence is expressed in base p, wher 
p is a prime number. 
N=a0p0+a1p1+………aNpN, whre N is the smallest integer 

for which ai=0. 
 

2. Thus the number n in base p is a0a1a2….aN. 
3. This number is reflected around the decimal point which 

gives 0.aN…..a2a1 
4. Now xn=

௔ಿ
௣

+௔ಿషభ
௣మ

+…………….+ ௔భ
௣ಿషభ

+௔బ
௣ಿ
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For Example: 

For base 3 the 23rd point is given by 

23=2x32+1x31+2x30 

Thus the number equivalent in base 3 is 212 

Its reflection around the decimal point 0.212 

Thus x23=2 x ଵ
ଷభ

 +1 x ଵ
ଷమ

+2 x ଵ
ଷయ

= ଶଷ
ଶ଻

 

The sequence spreads out after 2n-1 points 

Cycle length differs with change in base.  

For base 3 

No.  Expressed in 
terms of base 

Sequence 

0 0 0 
1 1 1/3 
2 2 2/3 
3 10 1/9 
4 11 4/9 
5 12 7/9 
6 20 2/9 

 
First ten terms of Vander Corput Sequence with base 3 

 
2.3 Faure Sequences 

The Faure sequence uses only one base for all dimensions & it 
uses a permutation of the vector elements for each dimension. 

The base of a Faure sequence is the smallest prime number 
that is larger than or equal to the number of dimensions in the 
problem, or equal 2 for one dimensional problem.  

We can generate a number in the interval[0,1) by reflecting the 
expansion in base r about the decimal point. Let us see 
through an illustration. 

We can write 7 in base 3, 

7=2(31)+1(30)=21 

Thus 3(7)=1/3+2/9=5/9 

Similarly 3(8)=2/3+2/9=8/9 

The first 9 numbers in this sequence are  

9/27,18/27,3/27,12/27,21/27,6/27,15/27,24/27,1/27 

The general expression for n in terms of base r is 

n= 

only a finite no. Of aj(n) will be non zero. 

Thus the corresponding random no as per this procedure is 

r(n)= 

Let us see the procedure to obtain s dimensional 
fauresequence . 

Let r be the smallest prime no. That is ≥2& ≥s 
 
ak

j(n)=iCjai
k-1(n)mod r, 

the next level of coefficients is obtained by multiplying an 
upper triangular matrix with elements 

0C0 1C0 2C0 3C0 

0 1C1 2C1 3C1 
0 0 2C2 3C2 
0 0 0 3C3 

 
The successive points in the Faure sequence is given by , 
k
r(n)=ak

j(n)-j-1 , 2≤k≤s 

3. (T,M,S) NETS AND (T,S) SEQUENCE 

(t,m, s)-nets and (t, s)-sequences were developed by 
Niedreitter with an idea of providing excellent deterministic 
sample points for quasi-Monte Carlo methods.The motivation 
behind development of (t,m,s) nets and (t,s) sequences was to 
all intervals should have fairly equal proportion of points of a 
sequence. 

Consider [0,1)s a half open s dimensional cube, an elementary 
interval in [0,1)s in base b is of the form 

ෑ[
ܽ௜
ܾௗ೔ ,

ܽ௜ + 1
ܾௗ೔ )

௦

௜ୀଵ

 

Where each di≥ 0 also for each ai, 0≤ai≤bdi. 

Volume of this elementary sub interval is ܾ∑ௗ೔. 

Let s≥ 1,ܾ ≥ 2 ܽ݊݀ 0 ≤ ݐ ≤ ݉  

,݉,ݐ) ℎ݁݊ݐ   ℎ݁ݐ ݊݅ ݏݐ݊݅݋݌௠ܾ ݂݋ ݐ݁ݏ ܽ ݏ݅ ܾ ݁ݏܾܽ ݊݅ ݐ݁݊(ݏ

 .defined above ܾ݁ݑܿ ݊݁݌݋ ℎ݈݂ܽ ݐ݅݊ݑ
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A (t,s) sequence in base b is an infinite sequence 
x0,x1,x2,……. of points in [0,1)s with the property that for 
every m>t and k>=0 the set { [xi] / kbm<i< (k+1)bm} is (t,m,s) 
net in base b. 

For applications of these , it is important to have a nested 
sequence of (ti,mi, s)-nets(with mi tending to infinity) in the 
same dimension s and with all ti bounded above by a constant 
t.  

This allows the user to improve estimates on an integral 
without losing the benefit of preliminary computations. Such a 
sequence of nets can be developed via (t, s)-sequences. 

3.1 Scrambling 

Quasi-Monte Carlo methods are deterministic in nature and 
therefore error estimationas in statistical Monte Carlo methods 
is not possible. Randomization can be introduced in a quasi-
Monte Carlo method by scramblingi.e. by randomizing 
thedeterministic sample points used in the method. A simple 
scrambling scheme like random shifts can be applied to any 
intervak Is.  

Let x1,. .. ,xN∈I sbe arbitrary then 

yn= {xn+ r}  

ris a random vector uniformly distributed over I sand {·} 
denotes reductionmodulo 1 in each coordinate of a point in Rs. 

Random permutation of digits and Linear scrambling are other 
methods of Scrambling to introduce randomization. 

4. CONCLUSION 

Monte Carlo method play an important role in obtaining 
approximation to a problem that can’t be solved analytically. 
The convergence is improved further of these methods by 
introducing Quasi Monte Carlo Methods which use 
deterministic points for the evaluation of the integral. Several 
constructed sequences like Vander Corput, halton, Sobol give 
improved results while running simulation problems in diverse 
fields compared to Monte Carlo Methods. One of the 
disadvantages occurs with increase in dimension. The (t,m,s) 
nets and (t,s) help in achieving the goal of uniformity in much 
better way compared to other low discrepancy sequences. 
They are constructed keeping in mind the fair filling of space 
which is the requirement of uniformity. The only problem of 
error estimation in this case can be achieved by efficient ways 
of introducing randomization.  
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